
TutaCrypt

Protocol Speci�cation
Version 1.0

Valentin Franck

Vitor Sakaguti

Bernd Deterding

tuta.com

March 11, 2024

Abstract

We present TutaCrypt, a protocol for hybrid post-quantum mail encryption. TutaCrypt replaces

RSA or ECC-based classical encryption schemes. It combines a post-quantum Key Encapsu-

alation Mechanism (CRYSTALS-Kyber) and an Elliptic-Curve-Di�e-Hellmann key exchange

(x25519) to agree on a shared secret.

https://tuta.com

Contents

1 Introduction 1

2 Preliminaries and Notation 1

2.1 Roles . 1

2.2 Preliminaries . 1

2.3 Cryptographic Notation . 1

2.4 Cryptographic Keys . 2

3 Protocol Phases 3

3.1 Setup . 3

3.2 Encapsulation . 3

3.3 Decapsulation . 4

4 Protocol Messages 5

5 Evaluation 6

5.1 Threat Model . 6

5.2 Security Properties . 7

5.3 Limitations . 7

5.3.1 Missing key veri�cation . 7

5.3.2 Insider non-repudiation . 7

5.3.3 Identity Key Compromise . 7

5.3.4 Identity Binding . 8

5.3.5 Replayable Authentication . 8

1 Introduction

This document speci�es TutaCrypt, a protocol designed for hybrid mail encryption in Tuta

Mail. The protocol combines a classical Elliptic-Curve-Di�e-Hellman key exchange with a post-

quantum KEM. Its goal is to replace the usage of RSA in Tuta Mail. In the remainder of

this document we �rst describe some preliminaries such as the cryptographic primitives used.

We de�ne the core algorithms of the protocol and describe the �ow of messages between the

communicating parties. Finally, we discuss the security properties and some limitations of the

protocol.

2 Preliminaries and Notation

In this section we describe the roles, our preliminaries and the cryptographic notation.

2.1 Roles

There are three parties in the TutaCrypt protocol: Alice, Bob and a server.

� Alice wants to send an encrypted message to Bob.

� Bob wants to be able to receive encrypted messages from Alice.

� The server stores messages on behalf of Alice and Bob. It also allows them to publish their

public keys.

2.2 Preliminaries

There are several parameters that all parties participating in the TutaCrypt protocol need to

agree on:

� EncodeMsg(V, IK, EK, CT, BKEnc): A function that encodes the version number V ,

the elliptic curve public keys IK and EK, the ciphertext CT and the encrypted symmetric

key BKEnc into a byte sequence.

� (V, IK, EK, CT, BKEnc)← DecodeMsg(M): A function that decodes the byte sequence

M into the version number V , the elliptic curve public keys IK and EK, the ciphertext

CT and the encrypted symmetric key BKEnc.

� A || B represents the concatenation of the byte sequences A and B.

2.3 Cryptographic Notation

TutaCrypt uses the following cryptographic primitives. Key pairs are denoted by public keys

only. We assume that the private key can (only) be accessed by the key owner.

� K ← AEGen(): Generates a 256-bit random key for the Authenticated Encryption.

1

� DEnc ← AEEnc(K, D): Authenticated Encryption: AES-256 in CBC mode with HMAC-

SHA-256 (Encrypt-then-MAC), where K is the encryption key and D is the data to be

encrypted. K is extended into two 256-bit keys, cK for encryption and mK for Mac

computation, using SHA-512.

� D ← AEDec(K, DEnc): Authenticated Decryption: AES-256 in CBC mode with HMAC-

SHA-256 (Encrypt-then-MAC), where K is the decryption key and DEnc is the data to

be decrypted. K is extended into two 256-bit keys, one for encryption and one for Mac

computation as explained above.

� PKECC ← ECCGen(): Generates an Elliptic Curve key pair (x25519), represented by its

public key.

� DH ← ECDH(PK1, PK2): The Elliptic Curve Di�e-Hellman Key Exchange instantiated

with x25519 using the private key corresponding to the public key PK1 as well as the public

key PK2.

� PKPQ ← PQGen(): Generates a Post-quantum key pair instantiated by Kyber-1024, rep-

resented by its public key.

� (SSPQ, CTPQ) ← PQEnc(PKPQ): The Post-quantum Key Encapsulation Mechanism

instantiated with Kyber-1024. PKPQ is a public Kyber key. SSPQ represents the shared

secret output and CTPQ represents the ciphertext output of the KEM.

� SSPQ ← PQDec(CTPQ, PKPQ): The Post-quantum Key Decapsulation Mechanism in-

stantiated with Kyber-1024 using the private key corresponding to the public key IKPQ.

CTPQ is the ciphertext produced during encapsulation with the public Kyber key PKPQ.

The output is the same shared secret SSPQ as during the encapsulation.

� K ← KDF (CTX, IKM, INFO, L): The Key Derivation Function instantiated with

HKDF-SHA-256, that derives a key of length L bits. CTX is a context string, IKM is

the secret input key material and INFO is a string for domain separation.

2.4 Cryptographic Keys

TutaCrypt uses the following cryptographic keys:

� BK: a symmetric bucket key used for message encryption. Usually, this will be a key

encryption key used to encrypt the actual session keys (that encrypt the payload message).

The same BK will be reused when sending the same message to more than one recipient.

� KEK: a symmetric key encryption key both parties derive in the protocol run and use to

encrypt or decrypt the bucket key BK.

� IKAECC : Alice's long term elliptic curve identity key pair for ECDH computations,

denoted by the public key.

2

� IKAPQ: Alice's long term post-quantum identity key pair for PQEnc and PQDec com-

putations, denoted by the public key. This is only needed in case Alice receives messages

herself.

� EKAECC : An ephemeral elliptic curve key pair for ECDH computations, denoted by the

public key. This key pair is generated by Alice during the encapsulation.

� IKBECC : Bob's long term elliptic curve identity key pair for ECDH computations, de-

noted by the public key.

� IKBPQ: Bob's long term post-quantum identity key pair for PQEnc and PQDec compu-

tations, denoted by the public key.

3 Protocol Phases

3.1 Setup

Bob generates the TutaCrypt identity keys: an X25519 key pair IKBECC and a Kyber key pair

IKBPQ. Bob publishes both public keys (IKBECC , IKBPQ). Alice generates and publishes

her own TutaCrypt identity keys in the same way: (IKAECC , IKAPQ). The key generation is

described in Algorithm 1.

Algorithm 1 Setup

1: procedure generateKeys

2: IKECC ← ECCGen()

3: IKPQ ← PQGen()

4: IK ← (IKECC , IKPQ)

5: return IK

6: end procedure

3.2 Encapsulation

Alice generates BK with BK ← AEGen() and runs Algorithm 2 in order to derive a key encryp-

tion key KEK and encrypt BK with it.1

1Please note that we are aware that formally this protocol would only be a KEM if the bucket key were to
be generated inside the encapsulation algorithm. We choose otherwise to be able to reuse BK for multiple
recipients. Anyway, it seems justi�ed to call the algorithms we use encapsulate and decapsulate.

3

Algorithm 2 Encapsulation

1: procedure encapsulate(V, IKAECC , IKBECC , IKBPQ, BK)

2: if V 6= 0 then . V is included to be able to make breaking changes in future versions

3: return ⊥
4: end if

5: EKAECC ← ECCGen()

6: DHI ← ECDH(IKAECC , IKBECC)

7: DHE ← ECDH(EKAECC , IKBECC)

8: (SSPQ, CTPQ)← PQEnc(IKBPQ)

9: CTX ← IKAECC || EKAECC || IKBECC || IKBPQ || CTPQ || V
10: IKM ← DHE || DHI || SSPQ

11: KEK ← KDF (CTX, IKM, “kek”, 256)

12: BKEnc ← AEEnc(KEK, BK)

13: MTC ← EncodeMsg(V, IKAECC , EKAECC , CTPQ, BKEnc)

14: return MTC

15: end procedure

Figure 1 depicts how Alice derives the shared secrets as described in Algorithm 2.

Alice

IKAECC

EKAECC

CTPQ

Shared Secrets

DHI

DHE

SSPQ

Bob

IKBECC

IKBPQ

Figure 1: The diagram shows how the key pairs involved in TutaCrypt interact to derive shared

secrets. The shared secrets are concatenated and used to derive an encryption key for

the bucket key at a later step.

3.3 Decapsulation

In order to decrypt Alice's message, which is encrypted with the bucket key BK, Bob needs to

derive the same key encryption key KEK as Alice and decrypt the bucket key BKEnc with it.

Algorithm 3 describes Bob's computations to obtain BK. Again the core part of the algorithm

4

is displayed in Figure 1. Note that the authentication of the sender is achieved via the identity

key used in the encapsulation.2 However, in order to base the authentication not on trust in

the server Bob would need to verify Alice's identity key. As explained in 5.3.1 this is not yet

possible.

Algorithm 3 Decapsulation

1: procedure decapsulate(MTC , IKBECC , IKBPQ, IKAECC)

2: (V, IKA′
ECC , EKAECC , CTPQ, BKEnc)← DecodeMsg(MTC)

3: if V 6= 0 then

4: return ⊥
5: end if

6: if IKA′
ECC 6= IKAECC then . Key veri�cation

7: return ⊥
8: end if

9: DHI ← ECDH(IKBECC , IKAECC)

10: DHE ← ECDH(IKBECC , EKAECC)

11: SSPQ ← PQDec(CTPQ, IKBPQ)

12: CTX ← IKAECC || EKAECC || IKBECC || IKBPQ || CTPQ || V
13: IKM ← DHE || DHI || SSPQ

14: KEK ← KDF (CTX, IKM, “kek”, 256)

15: BK ← AEDec(KEK, BKEnc)

16: return BK

17: end procedure

4 Protocol Messages

In this section we describe how messages are sent between the communicating parties. Figure 2

provides an overview over the three phases: setup, encapsulation and decapsulation.

During setup, both Alice and Bob generate keys as described in the previous section and

publish their public keys to the server. During encapsulation Alice �rst requests Bob's public

keys from the server. She then runs the encapsulation algorithm as described before to encrypt

a bucket key BK. It is out of the scope of this document how she can use that bucket key to

encrypt her message and send it to Bob. During decapsulation Bob fetches Alice's TutaCrypt

message MTC and her public key from the server. He then decapsulates the message as described

in the previous section and derives the same bucket key BK as Alice.

2For this purpose it would not have been necessary to include the used identity key in the message (IKAECC)
and compare it to the one from the server (IKA′

ECC) as decryption would just fail if the wrong key were used.
The necessity of the key comparison rather results from the Tuta Mail application. We have simpli�ed this
in the speci�ed algorithm. In the rare case that Alice uses an email alias to send the mail and then moves
the alias to a di�erent user (of her own account) before Bob decrypts the message, IKAECC would indeed be
di�rent from IKA′

ECC even though the mail is not forged. In addition, IKAECC must be used to decrypt the
message if Alice deleted her account before Bob received the message. Bob could not get IKA′

ECC from the
server anymore. Whenever IKAECC is used to decrypt a message instead of IKA′

ECC , we display a warning
banner that the sender could not be authenticated.

5

ServerAlice Bob

(IKBECC , IKBPQ)← generateKeys()

(IKBECC , IKBPQ)(IKAECC , IKAPQ)← generateKeys()

(IKAECC , IKAPQ)

requestKey(“Bob”)

(IKBECC , IKBPQ)

BK ← AEGen()

MTC ← encapsulate(0, IKAECC , IKBECC , IKBPQ, BK)

MTC

requestMessages()

MTC

requestKey(“Alice”)

(IKAECC , IKAPQ)

BK ← decapsulate(MTC , IKBECC , IKBPQ, IKAECC)

Setup

Encapsulation

Decapsulation

Figure 2: The diagram shows the �ow of computations and messages in TutaCrypt.

5 Evaluation

In this section informally discuss the security properties and limitations of the protocol.

5.1 Threat Model

We consider an attacker that records messages during a run of the protocol and tries decrypting

them once they have access to a quantum computer (Harvest Now Decrypt Later). We do not

consider an active quantum adversary that is able to break the security of ECDH during the

protocol execution. We do, however, consider an active adversary that might tamper with the

exchanged data in the classical attacker model.

6

5.2 Security Properties

TutaCrypt provides con�dentiality both against active classical and quantum adversaries. It pro-

vides integrity against classical adversaries. It provides authentication in the classical scenario as

discussed in section 3.3. TutaCrypt neither provides perfect forward secrecy nor post-compromise

security.

5.3 Limitations

In this section we discuss some known limitations of the presented protocol design. We acknowl-

edge that message authentication is not as robust as con�dentiality, in particular in scenarios

where the identity keys of either party are compromised or messages are sent to untrusted recip-

ients.

5.3.1 Missing key veri�cation

As explained in section 3.3 the communicating parties authenticate themselves by using their

identity keys in the encapsulation algorithm. However, the identity keys are delivered by the

server and there are currently no means to verify them. A malicious server, for example a

compromised one or a Machine-in-the-Middle (MITM), could deliver a di�erent key claiming it

to be Alice's. We will address this issue in the future by implementing proper key veri�cation

mechanisms.

5.3.2 Insider non-repudiation

All symmetric encryption is Authenticated Encryption. However, anyone with access to the

bucket key BK could change the message and recompute the MACs on the encrypted instances

as they can decrypt the session keys with the bucket key. This is relevant in a scenario where

Alice sends her message to multiple recipients, say to both Bob and Charlie while using the same

bucket key BK. Currently, while the protocol provides plausible deniability it does not achieve

insider non-repudiation as anyone with access to the bucket key could have created or modi�ed

the message.

This could be mitigated by including a tag over the ciphertext of the entire message in the

context string when deriving the key encryption key. That way no other recipient could have

forged the message, because the key derivation and thus decryption would just fail if it were

modi�ed after sending. However, this is not trivial in the Tuta Mail application.

5.3.3 Identity Key Compromise

If Alice's long term identity keys are compromised by Charlie, Charlie can send messages to Alice

impersonating any other party to Alice. Also, Charlie can impersonate Alice to any other party.

Both attacks are possible because authentication in the protocol is only based on the ECDH

between static identity keys. The protocol is not able to recover from this state. There are two

possible changes that could mitigate this. The �rst is allowing Alice to rotate her identity keys

(periodically and/or on demand) and the second is switching to a double ratchet based protocol

that provides perfect forward secrecy and future secrecy.

7

5.3.4 Identity Binding

It is currently possible that Charlie presents Bob's public keys as his own to Alice. This is known

as an unknown key share attack. If Charlie does that, Alice will think that she sends a message

to Charlie and Charlie can forward the message to Bob. Charlie can even change the recipient

�eld on the mail instance as it is not encrypted and more importantly not authenticated.

It might be possible to reduce the probability of such an attack by including more data such

as mail addresses in the context of the KDF .

5.3.5 Replayable Authentication

If an attacker, called Charlie, ever obtains a valid bucket key BK and the corresponding cipher-

text MTC from a message that Alice sent to Bob, Charlie can use the bucket key to encrypt his

own payload message MC and send MC and MTC to Bob pretending it came from Alice. Bob

would not be able to recognize that MTC is being replayed to him and would assume that MC

is an authenticated message from Alice.

8

	Introduction
	Preliminaries and Notation
	Roles
	Preliminaries
	Cryptographic Notation
	Cryptographic Keys

	Protocol Phases
	Setup
	Encapsulation
	Decapsulation

	Protocol Messages
	Evaluation
	Threat Model
	Security Properties
	Limitations
	Missing key verification
	Insider non-repudiation
	Identity Key Compromise
	Identity Binding
	Replayable Authentication

